Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 34(7): 1576-1586.e5, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38479386

RESUMO

Strong genetic structure has prompted discussion regarding giraffe taxonomy,1,2,3 including a suggestion to split the giraffe into four species: Northern (Giraffa c. camelopardalis), Reticulated (G. c. reticulata), Masai (G. c. tippelskirchi), and Southern giraffes (G. c. giraffa).4,5,6 However, their evolutionary history is not yet fully resolved, as previous studies used a simple bifurcating model and did not explore the presence or extent of gene flow between lineages. We therefore inferred a model that incorporates various evolutionary processes to assess the drivers of contemporary giraffe diversity. We analyzed whole-genome sequencing data from 90 wild giraffes from 29 localities across their current distribution. The most basal divergence was dated to 280 kya. Genetic differentiation, FST, among major lineages ranged between 0.28 and 0.62, and we found significant levels of ancient gene flow between them. In particular, several analyses suggested that the Reticulated lineage evolved through admixture, with almost equal contribution from the Northern lineage and an ancestral lineage related to Masai and Southern giraffes. These new results highlight a scenario of strong differentiation despite gene flow, providing further context for the interpretation of giraffe diversity and the process of speciation in general. They also illustrate that conservation measures need to target various lineages and sublineages and that separate management strategies are needed to conserve giraffe diversity effectively. Given local extinctions and recent dramatic declines in many giraffe populations, this improved understanding of giraffe evolutionary history is relevant for conservation interventions, including reintroductions and reinforcements of existing populations.


Assuntos
Girafas , Animais , Girafas/genética , Ruminantes/genética , Evolução Biológica , Filogenia , Deriva Genética
2.
BMC Biol ; 21(1): 215, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833744

RESUMO

BACKGROUND: In the speciation continuum, the strength of reproductive isolation varies, and species boundaries are blurred by gene flow. Interbreeding among giraffe (Giraffa spp.) in captivity is known, and anecdotal reports of natural hybrids exist. In Kenya, Nubian (G. camelopardalis camelopardalis), reticulated (G. reticulata), and Masai giraffe sensu stricto (G. tippelskirchi tippelskirchi) are parapatric, and thus, the country might be a melting pot for these taxa. We analyzed 128 genomes of wild giraffe, 113 newly sequenced, representing these three taxa. RESULTS: We found varying levels of Nubian ancestry in 13 reticulated giraffe sampled across the Laikipia Plateau most likely reflecting historical gene flow between these two lineages. Although comparatively weaker signs of ancestral gene flow and potential mitochondrial introgression from reticulated into Masai giraffe were also detected, estimated admixture levels between these two lineages are minimal. Importantly, contemporary gene flow between East African giraffe lineages was not statistically significant. Effective population sizes have declined since the Late Pleistocene, more severely for Nubian and reticulated giraffe. CONCLUSIONS: Despite historically hybridizing, these three giraffe lineages have maintained their overall genomic integrity suggesting effective reproductive isolation, consistent with the previous classification of giraffe into four species.


Assuntos
Girafas , Animais , Girafas/genética , Quênia , Genômica , Genoma , Hibridização Genética
3.
Science ; 379(6633): eade3392, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36795806

RESUMO

Hou et al. challenged the giraffoid affinity of Discokeryx and its ecology and behavior. In our response we reiterate that Discokeryx is a giraffoid that, along with Giraffa, shows extreme evolution of head-neck morphologies that were presumably shaped by selective pressure from sexual competition and marginal environments.


Assuntos
Aclimatação , Evolução Biológica , Girafas , Seleção Sexual , Seleção Genética , Animais , Girafas/genética , Girafas/fisiologia
4.
Science ; 379(6633): eadd9559, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36795824

RESUMO

Wang et al. (Research Articles, 3 June 2022, eabl8316) reported an early Miocene giraffoid that exhibited fierce head-butting behavior and concluded that sexual selection promoted head-neck evolution in giraffoids. However, we argue that this ruminant is not a giraffoid and thus that the hypothesis that sexual selection promoted giraffoid head-neck evolution is not sufficiently supported.


Assuntos
Adaptação Fisiológica , Evolução Biológica , Girafas , Seleção Sexual , Aclimatação , Adaptação Fisiológica/genética , Cabeça , Pescoço , Animais , Girafas/anatomia & histologia , Girafas/genética , Girafas/fisiologia
5.
Genes (Basel) ; 13(2)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35205265

RESUMO

Three of the four species of giraffe are threatened, particularly the northern giraffe (Giraffa camelopardalis), which collectively have the smallest known wild population estimates. Among the three subspecies of the northern giraffe, the West African giraffe (Giraffa camelopardalis peralta) had declined to 49 individuals by 1996 and only recovered due to conservation efforts undertaken in the past 25 years, while the Kordofan giraffe (Giraffa camelopardalis antiquorum) remains at <2300 individuals distributed in small, isolated populations over a large geographical range in Central Africa. These combined factors could lead to genetically depauperated populations. We analyzed 119 mitochondrial sequences and 26 whole genomes of northern giraffe individuals to investigate their population structure and assess the recent demographic history and current genomic diversity of West African and Kordofan giraffe. Phylogenetic and population structure analyses separate the three subspecies of northern giraffe and suggest genetic differentiation between populations from eastern and western areas of the Kordofan giraffe's range. Both West African and Kordofan giraffe show a gradual decline in effective population size over the last 10 ka and have moderate genome-wide heterozygosity compared to other giraffe species. Recent inbreeding levels are higher in the West African giraffe and in Kordofan giraffe from Garamba National Park, Democratic Republic of Congo. Although numbers for both West African and some populations of Kordofan giraffe have increased in recent years, the threat of habitat loss, climate change impacts, and illegal hunting persists. Thus, future conservation actions should consider close genetic monitoring of populations to detect and, where practical, counteract negative trends that might develop.


Assuntos
Girafas , Animais , Genoma , Genômica , Geografia , Girafas/genética , Filogenia
7.
Curr Biol ; 31(13): 2929-2938.e5, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-33957077

RESUMO

Species is the fundamental taxonomic unit in biology and its delimitation has implications for conservation. In giraffe (Giraffa spp.), multiple taxonomic classifications have been proposed since the early 1900s.1 However, one species with nine subspecies has been generally accepted,2 likely due to limited in-depth assessments, subspecies hybridizing in captivity,3,4 and anecdotal reports of hybrids in the wild.5 Giraffe taxonomy received new attention after population genetic studies using traditional genetic markers suggested at least four species.6,7 This view has been met with controversy,8 setting the stage for debate.9,10 Genomics is significantly enhancing our understanding of biodiversity and speciation relative to traditional genetic approaches and thus has important implications for species delineation and conservation.11 We present a high-quality de novo genome assembly of the critically endangered Kordofan giraffe (G. camelopardalis antiquorum)12 and a comprehensive whole-genome analysis of 50 giraffe representing all traditionally recognized subspecies. Population structure and phylogenomic analyses support four separately evolving giraffe lineages, which diverged 230-370 ka ago. These lineages underwent distinct demographic histories and show different levels of heterozygosity and inbreeding. Our results strengthen previous findings of limited gene flow and admixture among putative giraffe species6,7,9 and establish a genomic foundation for recognizing four species and seven subspecies, the latter of which should be considered as evolutionary significant units. Achieving a consensus over the number of species and subspecies in giraffe is essential for adequately assessing their threat level and will improve conservation efforts for these iconic taxa.


Assuntos
Genoma/genética , Genômica , Girafas/classificação , Girafas/genética , Filogenia , Animais , Fluxo Gênico , Masculino , Especificidade da Espécie
9.
Sci Adv ; 7(12)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33731352

RESUMO

The suite of adaptations associated with the extreme stature of the giraffe has long interested biologists and physiologists. By generating a high-quality chromosome-level giraffe genome and a comprehensive comparison with other ruminant genomes, we identified a robust catalog of giraffe-specific mutations. These are primarily related to cardiovascular, bone growth, vision, hearing, and circadian functions. Among them, the giraffe FGFRL1 gene is an outlier with seven unique amino acid substitutions not found in any other ruminant. Gene-edited mice with the giraffe-type FGFRL1 show exceptional hypertension resistance and higher bone mineral density, both of which are tightly connected with giraffe adaptations to high stature. Our results facilitate a deeper understanding of the molecular mechanism underpinning distinct giraffe traits, and may provide insights into the study of hypertension in humans.


Assuntos
Girafas , Hipertensão , Aclimatação , Adaptação Fisiológica , Animais , Genoma , Girafas/genética , Hipertensão/genética , Camundongos
10.
PLoS One ; 15(9): e0237590, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32925949

RESUMO

Bushmeat harvesting and consumption represents a potential risk for the spillover of endemic zoonotic pathogens, yet remains a common practice in many parts of the world. Given that the harvesting and selling of bushmeat is illegal in Tanzania and other parts of Africa, the supply chain is informal and may include hunters, whole-sellers, retailers, and individual resellers who typically sell bushmeat in small pieces. These pieces are often further processed, obscuring species-identifying morphological characteristics, contributing to incomplete or mistaken knowledge of species of origin and potentially confounding assessments of pathogen spillover risk and bushmeat offtake. The current investigation sought to identify the species of origin and assess the concordance between seller-reported and laboratory-confirmed species of origin of bushmeat harvested from in and around the Serengeti National Park in Tanzania. After obtaining necessary permits, the species of origin of a total of 151 bushmeat samples purchased from known intermediaries from 2016 to 2018 were characterized by PCR and sequence analysis of the cytochrome B (CytB) gene. Based on these sequence analyses, 30%, 95% Confidence Interval (CI: 24.4-38.6) of bushmeat samples were misidentified by sellers. Misreporting amongst the top five source species (wildebeest, buffalo, impala, zebra, and giraffe) ranged from 20% (CI: 11.4-33.2) for samples reported as wildebeest to 47% (CI: 22.2-72.7) for samples reported as zebra although there was no systematic bias in reporting. Our findings suggest that while misreporting errors are unlikely to confound wildlife offtake estimates for bushmeat consumption within the Serengeti ecosystem, the role of misreporting bias on the risk of spillover events of endemic zoonotic infections from bushmeat requires further investigation.


Assuntos
Animais Selvagens , Carne/provisão & distribuição , Zoonoses/etiologia , Animais , Animais Selvagens/genética , Búfalos/genética , Comércio , Citocromos b/genética , Ecossistema , Equidae/genética , Girafas/genética , Humanos , Parques Recreativos , Tanzânia/epidemiologia
11.
Sci Rep ; 10(1): 4741, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-32179808

RESUMO

Reliable molecular identification of vertebrate species from morphologically unidentifiable tissue is critical for the prosecution of illegally-traded wildlife products, conservation-based biodiversity research, and identification of blood-meal hosts of hematophagous invertebrates. However, forensic identification of vertebrate tissue relies on sequencing of the mitochondrial cytochrome oxidase I (COI) 'barcode' gene, which remains costly for purposes of screening large numbers of unknown samples during routine surveillance. Here, we adapted a rapid, low-cost approach to differentiate 10 domestic and 24 wildlife species that are common in the East African illegal wildlife products trade based on their unique high-resolution melting profiles from COI, cytochrome b, and 16S ribosomal RNA gene PCR products. Using the approach, we identified (i) giraffe among covertly sampled meat from Kenyan butcheries, and (ii) forest elephant mitochondrial sequences among savannah elephant reference samples. This approach is being adopted for high-throughput pre-screening of potential bushmeat samples in East African forensic science pipelines.


Assuntos
Animais Selvagens/genética , Biodiversidade , DNA Mitocondrial/genética , Genética Forense/métodos , Ensaios de Triagem em Larga Escala/métodos , Reação em Cadeia da Polimerase/métodos , Vertebrados/genética , Animais , Conservação dos Recursos Naturais , Citocromos b/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Elefantes/genética , Girafas/genética , Quênia , Mitocôndrias/enzimologia , RNA Ribossômico 16S/genética , Especificidade da Espécie
12.
PLoS One ; 15(2): e0217956, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32053589

RESUMO

Molecular data are now commonly used in taxonomy for delimiting cryptic species. In the case of giraffes, which were treated as a single species (Giraffa camelopardalis) during half of a century, several molecular studies have suggested a splitting into four to seven species, but the criteria applied for taxonomic delimitation were not fully described. In this study, we have analysed all multi-locus DNA sequences available for giraffes using multispecies coalescent (MSC: *BEAST, BPP and STACEY), population genetic (STRUCTURE, allelic networks, haplotype network and bootstrapping, haplowebs and conspecificity matrix) and phylogenetic (MrBayes, PhyML, SuperTRI) methods to identify the number of species. Our results show that depending on the method chosen, different taxonomic hypotheses, recognizing from two to six species, can be considered for the genus Giraffa. Our results confirm that MSC methods can lead to taxonomic over-splitting, as they delimit geographic structure rather than species. The 3-species hypothesis, which recognizes G. camelopardalis sensu strico A, G. giraffa, and G. tippelskirchi, is highly supported by phylogenetic analyses and also corroborated by most population genetic and MSC analyses. The three species show high levels of nucleotide divergence in both nuclear (0.35-0.51%) and mitochondrial sequences (3-4%), and they are characterised by 7 to 12 exclusive synapomorphies (ES) detected in nine of the 21 nuclear introns analysed for this study. By contrast, other putative species, such as G. peralta, G. reticulata, G. thornicrofti or G. tippelskirchi sensu stricto, do not exhibit any ES in the nuclear genes. A robust mito-nuclear conflict was found for the position and monophyly of G. giraffa and G. tippelskirchi, which is interpreted as the result of a mitochondrial introgression from Masai to southeastern giraffe during the Pleistocene and nuclear gene flow mediated by male dispersal between southern populations (subspecies G. g. giraffa and G. g. angolensis).


Assuntos
Genética Populacional/métodos , Girafas/classificação , Tipagem de Sequências Multilocus , Distribuição Animal , Animais , Teorema de Bayes , DNA Mitocondrial/genética , Conjuntos de Dados como Assunto , Feminino , Fluxo Gênico , Variação Genética , Girafas/genética , Haplótipos , Masculino , Filogenia
13.
Gigascience ; 8(8)2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31367745

RESUMO

BACKGROUND: The Masai giraffe (Giraffa camelopardalis tippelskirchi) is the largest-bodied giraffe and the world's tallest terrestrial animal. With its extreme size and height, the giraffe's unique anatomical and physiological adaptations have long been of interest to diverse research fields. Giraffes are also critical to ecosystems of sub-Saharan Africa, with their long neck serving as a conduit to food sources not shared by other herbivores. Although the genome of a Masai giraffe has been sequenced, the assembly was highly fragmented and suboptimal for genome analysis. Herein we report an improved giraffe genome assembly to facilitate evolutionary analysis of the giraffe and other ruminant genomes. FINDINGS: Using SOAPdenovo2 and 170 Gbp of Illumina paired-end and mate-pair reads, we generated a 2.6-Gbp male Masai giraffe genome assembly, with a scaffold N50 of 3 Mbp. The incorporation of 114.6 Gbp of Chicago library sequencing data resulted in a HiRise SOAPdenovo + Chicago assembly with an N50 of 48 Mbp and containing 95% of expected genes according to BUSCO analysis. Using the Reference-Assisted Chromosome Assembly tool, we were able to order and orient scaffolds into 42 predicted chromosome fragments (PCFs). Using fluorescence in situ hybridization, we placed 153 cattle bacterial artificial chromosomes onto giraffe metaphase spreads to assess and assign the PCFs on 14 giraffe autosomes and the X chromosome resulting in the final assembly with an N50 of 177.94 Mbp. In this assembly, 21,621 protein-coding genes were identified using both de novo and homology-based predictions. CONCLUSIONS: We have produced the first chromosome-scale genome assembly for a Giraffidae species. This assembly provides a valuable resource for the study of artiodactyl evolution and for understanding the molecular basis of the unique adaptive traits of giraffes. In addition, the assembly will provide a powerful resource to assist conservation efforts of Masai giraffe, whose population size has declined by 52% in recent years.


Assuntos
Cromossomos de Mamíferos , Genoma , Genômica , Girafas/genética , Animais , Biologia Computacional/métodos , Evolução Molecular , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Cariotipagem , Anotação de Sequência Molecular , Filogenia
14.
Cytogenet Genome Res ; 152(2): 73-80, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28723680

RESUMO

Recently, the reticulated giraffe (G. reticulata) was identified as a distinct species, which emphasized the need for intensive research in this interesting animal. To shed light on the meiotic process as a source of biodiversity, we analysed the frequency and distribution of meiotic recombination in 2 reticulated giraffe males. We used immunofluorescence detection of synaptonemal complex protein (SYCP3), meiotic double strand breaks (DSB, marked as RAD51 foci) in leptonema, and crossovers (COs, as MLH1 foci) in pachynema. The mean number of autosomal MLH1 foci per cell (27), which resulted from a single, distally located MLH1 focus observed on most chromosome arms, is one of the lowest among mammalian species analysed so far. The CO/DSB conversion ratio was 0.32. The pseudoautosomal region was localised in the Xq and Yp termini by FISH and showed an MLH1 focus in 83% of the pachytene cells. Chromatin structures corresponding to the nucleolus organiser regions were observed in the pachytene spermatocytes. The results are discussed in the context of known data on meiosis in Cetartiodactyla, depicting that the variation in CO frequency among species of this taxonomic group is mostly associated with their diploid chromosome number.


Assuntos
Girafas/genética , Meiose/genética , Recombinação Genética , Animais , Imunofluorescência , Hibridização in Situ Fluorescente , Masculino , Proteína 1 Homóloga a MutL/genética , Região Organizadora do Nucléolo/genética , Rad51 Recombinase/genética , Complexo Sinaptonêmico/genética
15.
BMC Evol Biol ; 17(1): 54, 2017 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-28209121

RESUMO

BACKGROUND: Toll-like receptors (TLRs) are the frontline actors in the innate immune response to various pathogens and are expected to be targets of natural selection in species adapted to habitats with contrasting pathogen burdens. The recent publication of genome sequences of giraffe and okapi together afforded the opportunity to examine the evolution of selected TLRs in broad range of terrestrial ungulates and cetaceans during their complex habitat diversification. Through direct sequence comparisons and standard evolutionary approaches, the extent of nucleotide and protein sequence diversity in seven Toll-like receptors (TLR2, TLR3, TLR4, TLR5, TLR7, TLR9 and TLR10) between giraffe and closely related species was determined. In addition, comparison of the patterning of key TLR motifs and domains between giraffe and related species was performed. The quantification of selection pressure and divergence on TLRs among terrestrial ungulates and cetaceans was also performed. RESULTS: Sequence analysis shows that giraffe has 94-99% nucleotide identity with okapi and cattle for all TLRs analyzed. Variations in the number of Leucine-rich repeats were observed in some of TLRs between giraffe, okapi and cattle. Patterning of key TLR domains did not reveal any significant differences in the domain architecture among giraffe, okapi and cattle. Molecular evolutionary analysis for selection pressure identifies positive selection on key sites for all TLRs examined suggesting that pervasive evolutionary pressure has taken place during the evolution of terrestrial ungulates and cetaceans. Analysis of positively selected sites showed some site to be part of Leucine-rich motifs suggesting functional relevance in species-specific recognition of pathogen associated molecular patterns. Notably, clade analysis reveals significant selection divergence between terrestrial ungulates and cetaceans in viral sensing TLR3. Mapping of giraffe TLR3 key substitutions to the structure of the receptor indicates that at least one of giraffe altered sites coincides with TLR3 residue known to play a critical role in receptor signaling activity. CONCLUSION: There is overall structural conservation in TLRs among giraffe, okapi and cattle indicating that the mechanism for innate immune response utilizing TLR pathways may not have changed very much during the evolution of these species. However, a broader phylogenetic analysis revealed signatures of adaptive evolution among terrestrial ungulates and cetaceans, including the observed selection divergence in TLR3. This suggests that long term ecological dynamics has led to species-specific innovation and functional variation in the mechanisms mediating innate immunity in terrestrial ungulates and cetaceans.


Assuntos
Cetáceos/genética , Evolução Molecular , Mamíferos/genética , Receptores Toll-Like/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Bovinos/genética , Ecossistema , Girafas/genética , Imunidade Inata , Seleção Genética , Especificidade da Espécie , Receptores Toll-Like/química
17.
Curr Biol ; 26(18): 2543-2549, 2016 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-27618261

RESUMO

Traditionally, one giraffe species and up to eleven subspecies have been recognized [1]; however, nine subspecies are commonly accepted [2]. Even after a century of research, the distinctness of each giraffe subspecies remains unclear, and the genetic variation across their distribution range has been incompletely explored. Recent genetic studies on mtDNA have shown reciprocal monophyly of the matrilines among seven of the nine assumed subspecies [3, 4]. Moreover, until now, genetic analyses have not been applied to biparentally inherited sequence data and did not include data from all nine giraffe subspecies. We sampled natural giraffe populations from across their range in Africa, and for the first time individuals from the nominate subspecies, the Nubian giraffe, Giraffa camelopardalis camelopardalis Linnaeus 1758 [5], were included in a genetic analysis. Coalescence-based multi-locus and population genetic analyses identify at least four separate and monophyletic clades, which should be recognized as four distinct giraffe species under the genetic isolation criterion. Analyses of 190 individuals from maternal and biparental markers support these findings and further suggest subsuming Rothschild's giraffe into the Nubian giraffe, as well as Thornicroft's giraffe into the Masai giraffe [6]. A giraffe survey genome produced valuable data from microsatellites, mobile genetic elements, and accurate divergence time estimates. Our findings provide the most inclusive analysis of giraffe relationships to date and show that their genetic complexity has been underestimated, highlighting the need for greater conservation efforts for the world's tallest mammal.


Assuntos
Especiação Genética , Girafas/classificação , Girafas/genética , África , Animais , DNA Mitocondrial/genética , Variação Genética , Tipagem de Sequências Multilocus , Filogenia
18.
Nat Commun ; 7: 11519, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27187213

RESUMO

The origins of giraffe's imposing stature and associated cardiovascular adaptations are unknown. Okapi, which lacks these unique features, is giraffe's closest relative and provides a useful comparison, to identify genetic variation underlying giraffe's long neck and cardiovascular system. The genomes of giraffe and okapi were sequenced, and through comparative analyses genes and pathways were identified that exhibit unique genetic changes and likely contribute to giraffe's unique features. Some of these genes are in the HOX, NOTCH and FGF signalling pathways, which regulate both skeletal and cardiovascular development, suggesting that giraffe's stature and cardiovascular adaptations evolved in parallel through changes in a small number of genes. Mitochondrial metabolism and volatile fatty acids transport genes are also evolutionarily diverged in giraffe and may be related to its unusual diet that includes toxic plants. Unexpectedly, substantial evolutionary changes have occurred in giraffe and okapi in double-strand break repair and centrosome functions.


Assuntos
Genoma , Girafas/genética , Girafas/fisiologia , Adaptação Fisiológica , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Animais , Sequência de Bases , Evolução Biológica , Desenvolvimento Ósseo/genética , Análise por Conglomerados , Ontologia Genética , Redes Reguladoras de Genes , Variação Genética , Girafas/anatomia & histologia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...